Documentation

FormalConjectures.Arxiv.«0911.2077».Conjecture6_3

Conjecture 6.3 #

Reference: arxiv/0911.2077 Central Binomial Tail Bounds by Matus Telgarsky

theorem arxiv.id0911_2077.conjecture6_3 (p : ) (h_p : p Set.Ioo 0 (1 / 2)) (k : ) (hk : 0 < k) (σ : ) (h_σ : σ = (p * (1 - p))) :
1 - ProbabilityTheory.gaussianPDFReal 0 1 ((1 / 2 - p) * (NNReal.sqrt (2 * k)) / σ) + 1 / 2 * ((2 * k).choose k) * σ ^ (2 * k) ((PMF.binomial (ENNReal.ofReal p) (2 * k)).toMeasure (Set.Ici k)).toReal

Empirical evidence seems to suggest that Slud's bound does not hold for all $p$, and in fact, as $n\to\infty$, the maximal permissible $p$ shrinks to $\frac{1}{2}$. Also, the following appears to be true:

When $p\in(0,1/2)$ and $m = 2k$ is even, and $\sigma := \sqrt{p(1-p)}$, $$ \mathbb{P}[B(p,m) \geq m/2] \geq 1 - \Phi\left(\frac{(1/2-p)\sqrt{m}}{\sigma}\right) + \frac 1 2\binom{m}{m/2}\sigma^{m}. $$